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Uncertainty quantification (UQ) methods are a tool for analysis of the performance of simulation models. 
This research summary describes how the application of UQ tools to the POP2 ocean model can be 
used to quantify model improvements, to understand where next-generation models can be improved, 
and to determine the settings of parameters and uncertainty in model applications.

U ncertainty quanitification (UQ) is concerned with learning about 
model performance from the comparison between model output 

and accepted performance targets. This research uses LANL’s Bayesian 
analysis tool GPM/SA (Gaussian Process Models for Simulation 
Analysis) [1] to study the Community Earth System Model’s ocean 
component, the LANL-developed POP2 [2]. Two products of the 
analysis are discussed: (1) a method for quantitatively assessing model 
performance for qualification of model improvements, and (2) an analysis 
of distributions on the parameters of key model settings in the face of 
conflicting measures of model performance.

Complex physical models often use parameterizations to overcome 
limitations. The Gent-McWilliams isopycnal transport and mixing 
scheme (GM) [3] corrects for the transport by ocean eddies that cannot 

be resolved in the current generation of climate simulations, run at grid 
resolutions comparable to our 0.8-degree grid simulations (Fig. 1b). The 
GM parameterization is arguably the most significant parameterization 
in ocean models used for long climate simulations, greatly improving the 
representation of ocean heat transports [4]. The current GM formulation 
relies on two uncertain parameter settings, an overall magnitude and a 

stratification-keyed weakening coefficient called tapering. The specific 
application goal in this project is to apply UQ analysis to the uncertain 
parameters of GM, determining its quality and best settings. 

Ocean model analysis challenges include: (1) sparse Earth system 
observations, especially for the deep ocean, making direct model-
observation comparison problematic; and (2) the ocean state contains 
long time scales, so the amount of computation required to reach a 
statistical steady state is daunting. To address these challenges, a test-
bed ocean configuration is adopted whose scope and computation are 
considerably reduced from the full Earth system. The “channel model” 
is designed to study eddy-induced transport, mimicking the Antarctic 
Circumpolar Current of the Southern Ocean. The reduced scope makes 
the computation of high-resolution simulations explicitly resolving eddies 
and their mixing effects feasible. A high-resolution simulation can then 
be taken as “truth” for the purposes of studying the GM parameters. 
Figure 1 shows the channel model’s sea surface temperature in the high-
resolution result, as it is to be compared to an ensemble of low-resolution 
model runs. The ensemble is designed to span the plausible ranges of 
the GM parameters. This ensemble allows the construction of a fast 
statistical emulator of the model’s response that can be used to support 
inferences in the comparison, including parameter distributions and 
measures for how well the model fits the dataset.

A key element in comparing the simulations to their targets is the 
specific set of metrics to be used for the comparison. The metrics define 
the question we are asking of the models and the analysis. Figure 2 
shows four metrics used for analysis, from a larger set of measures 
suggested by domain experts. Each member of this set is an extracted 
property versus depth, averaged horizontally over the simulation domain, 
and over a time window of five years of simulation, after equilibration. 
Temperature and salinity profiles show direct impacts of transport 
and mixing, the density in turn is dependent on these, and the vertical 
heat transport summarizes the movement of heat. Because we are 

Fig. 1. Uncertainty quantification 
compares a) a reference high-resolution 
solution to b) many examples of low-
resolution simulations at various settings 
of uncertain parameters.
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attempting to approximate with 
the GM scheme the effects of 
computationally complex fluid 
dynamics, it is not expected 
that we can meet the resolved 
simulation results in every detail. 
Qualitatively, these metrics 
appear in some cases to be very 
informative, and in other cases 
show difficulty.

UQ analysis accounts for 
uncertainty in the emulated 
model response, uncertainty 
in the parameters controlling 
the match between the low-
resolution model and its target, 
uncertainty in the general quality 

of fit between these models, and uncertainty regarding 
irreducible structural differences. These aspects cannot 
be considered in isolation, they are all part of the same 
problem of comparing simulations to a reference target, 
in this case the low-resolution parameterized model to the 
high-resolution target. The various interdependent aspects 
of uncertainty must be considered even when the focus is 
on one particular aspect. The UQ approach uses Gaussian 
process emulator models, an additive Gaussian process for 
structural discrepancy, and parameters for overall model fit 
expressed as a target precision. The result of analysis is a 
joint probability distribution of parameters, both those in the 
statistical model and those controlling the behavior of GM.

In our first goal to demonstrate the capability to qualify 
model improvements, we are interested in the summary 
measure of the ability of the model with GM to fit the target. 
We compare this measure for an older one-parameter GM 
implementation, the two parameters of the current GM, 
and the value of considering a third parameter related to 
the shape of the GM tapering. The improved model (one 
parameter to two parameters) is clearly quantifiable, while 

exposing the addition of a third 
parameter does not represent 
an advance in model fit. In this 
case the additional parameter 
isn’t independently contributing 
to quality fit with respect to the 
metrics.

The complete target of a UQ 
analysis is to understand what 
parameter settings are implied 
by the data, or perform “inverse” 
analysis–again, taking into account 
the various sources of uncertainty. Each metric results in 
a distribution on parameters, shown in the colored curves 
in the axes of Fig. 3. A novel aspect of this analysis is 
the methodology used to combine these various results. 
The composite distribution should attempt to unify the 
results where they are feasibly similar, but when there is 
unresolvable conflict should admit appropriate uncertainty. 
An appropriate model for this is a Bayesian hierarchical 
model across relevant metrics with a prior preferring 
consistency. Figure 3 shows how unification proceeds while 
adding indicators. The top axis shows that the implications 
of the temperature and salinity metrics are consistent. The 
middle axis shows that although the results of density are 
not independently identical, that information can be unified 
with the previous result. However, vertical heat transport 
represents information in conflict, hence its inclusion 
results in a large increase in uncertainty. In the problem 
context, we know that GM cannot improve all possible 
measures. The result of the UQ analysis communicates 
to the domain expert where these various metrics can 
be improved by GM consistently and where there is 
substantial discrepancy, providing valuable input to the 
next cycle of model improvements. Today, this information 
assists in understanding how to set the values of the 
current generation of applied models to achieve the best 
performance.

For more information contact James R. Gattiker at 
gatt@lanl.gov.
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Fig. 2. Four metrics for 
comparison: Potential 
Temperature, Salinity, Density 
(residual from simulations’ 
mean), and Vertical Heat 
Transport. Black is high-
resolution, color is a composite 
related to the sum of parameters 
for presentation.

Fig. 3. Summary of parameter 
distributions with respect to 
different metric sets.


